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ABSTRACT

In this paper, we report the direct observation of wake-field self-focusing of
an electron beam in plasma. The dynamics of beam self-pinching and the fast
collisionless evolution of a Bennett-like, near-equilibrium profile are examined
theoretically and computationally. The experimental results are compared to
predictions of the analysis, and discussed in the context of application to the

plasma lens and the plasma wake-field accelerator.
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1. Introduction

In the Plasma Wake-field Accelerator,” ® (PWFA) charged particles are ac-
celerated in the potentially ultra-high gradient fields supported by plasma waves
driven in the wake of an intense particle beam. These wake-flelds can also be
strongly focusing,:’] and this fact has led to the proposal of employing plasma
wake-fields to create a powerful final focusing lens for use in a future linear e"e”
collider.” ® This device has been termed a plasma lens, and can generate greater
than MG/cm focusing gradients for typical linear collider parameters. In the
course of the initial experimental investigations into the physical mechanisms
of the PWFA at Argonne National Laboratory, " evidence for very strong
self-focusing of the intense driving electron beam was accumulated. Relevant
observations included improved transmission of the driving beam through the fi-
nal limiting aperture of the plasma source when plasma was present, larger beam
divergence of the driving beam as measured at the spectrometer focal plane down-
stream of the plasma, and deflection of a secondary lower energy, low intensity
‘witness’ beam by the driver’s transverse wake-fields in the plasma. In addition,
the measurement of the accelerating wake-fields yielded convincing indirect evi-
dence of beam self-focusing, as at higher driving beam currents the wake-fields
were enhanced in both amplitude and in nonlinearity beyond what was expected
assuming the driving beam did not pinch. The degree of nonlinearity in the wake-
fields provided an estimate on the self-pinched driving beam radius; this estimate

agreed well with what is calculated from the theory of plasma focusing.""

Previous observations made during the PWFA experiments at Argonne thus
constitute an indirect case for the existence of plasma wake-field focusing and
support for some of the predictions of the relevant theory. This is not a sat-
isfactory state of affairs, however, as the theoretical estimnates of the observed
degree of wake-field wave nonlinearity were based on a rough synthesis of three-
dimensional linear™” and one-dimensional nonlinear"” ** PWFA theories, which

in total add up to a convincing plausibility argument. In order to make the expla-



nation of the observed phenomena in these experiments complete it is necessary
to measure the actual self-pinched beam profiles in the plasma. In addition,
the large volume of theoretical work done on plasma lenses to date, in which
researchers have attempted to reliably predict the behavior of the these devices
as focusing elements, demands experimental validation. With these factors as
motivation, a set of measurements of the self-pinched beam profiles in plasma
have been undertaken. The results of these measurements are reported in this
paper.

It is necessary to provide in some detail the theoretical background for under-
standing the processes involved in electron beam self-focusing in a plasma. The
discussion naturally breaks down into two distinet subjects, the plasmma wake-field
response the beam, and the subsequent dynamics of the beam as it is influenced
by these wake-flelds. A review of previous work on the plasma response is pre-
sented below, which is necessary for examining the eflects of the beam profile and
the plasma density on the form and strength of the focusing wake-fields. Asin a
certain limit these wake-fields become nearly independent of the plasma density
and depend only on the beam profile, the self-consistent evolution of the beam is
treated next. Analytical models of the self-pinch process are employed; laminar
flow is assumed in calculating the initial focusing dynamics, and the Maxwell-
Vlasov eqguation is utilized to discuss the asymptotic approach to self-pinched
Bennett equilibrium. Computer simnulations are shown to complement and clar-
ify the conclusions of the analysis. After the theoretical context is established,
the results of the experimental measurements are presented and compared with
the theory. The conclusions of the previous experiments are then re-examined in

light of this new data.



2. Linear Plasma Wake-field Theory

The two-dimensional linear theory of plasma wake-fields, as formulated by
P. Chen,” provides a simple model for calculating expected focusing wake-
fields in the presently relevant experimental regime. This theoretical treatment,
which is described below, applies to a cold plasma with density perturbation
small compared to the unperturbed electron density, and assumes an unchanging
beam density profile. From the cold plasma fluid equations with the ions assumed
stationary, a linearized equation can be derived which describes small amplitude
plasma electron response driven by a relativistic electron beam. The equation

can be written as
nq
L2

+ kgnl = _kf;nb; (21)

where ny = n—ng is the deviation of the plasma eleciron density from equilibrium
density ng, kp = 27/), = wpe = \/dwr.ng is the plasma wave number, and ny is

the beam density. The linearization of the equations requires that n; < ng.

If one assumes that the beam density distribution can be expressed in sepa-
rable form as ny, = pph(r}g(£), where py is the maximum beam density, + is the
radial coordinate, and £ = z — ¢t is the longitudinal coordinate measured from

the center of the bunch, the solution of Eq. (2.1) is given by
n =~ kppph(r) fﬂ(f’)sin(kp(fr — E))dE" = ~ pph(r)G{kp). (2.2)
£

Note that the plasma charge density —en; has the same transverse dependence
as the beam density h(r). The longitudinal response, however, is described by
G(kp€), a convolution integral over the beam density ahead of the point in ques-
tion with the causal Green’s function solution to Eq. (2.1). If the beam is short
compared with the plasma wavelength, then the convolution integral is large be-
hind the beam and negligible inside of the beam. This corresponds physically to

the impulse excitation of a large amplitude plasma wave in the beam’s wake with



very little plasma motion oceuring inside the beam, which is desirable for plasma
wake-field acceleration. If the beam is not short compared to a plasma wavelength
then the amplitude of the excited wave is smaller, as the plasma electrons have
time to react to and partially neutralize the beam space charge density. In the
limit that the longitudinal beam profile is smoothly varying and is long compared
to a plasma wavelength, then G(k,€) ~ —g(£), which implies ny >~ —ng. The
beam can be nearly space charge neutralized, and very small amplitude plasma
waves are driven in the heam’s wake. The beams employed in the present ex-
periments have approximately cylindrically symmetric bi-Gaussian distributions,
and we can write our initial beam density as ny, = pyexp (—72/202 — £2/202). If
the beam is long, one expects nj to also be bi-Gaussian, with small oscillations
at the plasma frequency superimposed on this equilibrium configuration. It can

be seen from Eq. (2.2) that the amplitude of these oscillations is approximately

pyexp (- kpoz)?/2], and thus vanish exponentially in the long beam limit.

Once one knows the plasma response, the wake-fields can be found directly'
or through solution of the wake potential equations,za] It is not necessary for
present purposes to examine these solutions in detail, as in the regime of interest
the calculation of the wake-fields simplifies considerably. If the beam is narrow
compared to a plasma wavelength (kpo, < 1), a condition which is approximately
satisfied in the experiments, then the plasma return current, which is localized
within a disk of radius of kp_l, flows mainly outside of the heam and the beam
current density is not locally neutralized. Thus in a long, narrow beam satisfying
kpo, € 1 € kpo, the beam is charge, but not current neutralized, and the wake-
fields reduce to the magnetic self-focusing forces of the beam. As the beam is
relativistic, these fields can be calculated trivially by using Gauss’ law. For the

cylindrically symmetric case, the transverse wake-flelds in this limit are given by

T

W, = —'47rezpbg(f)r% /h(r')drr]. (2.3)
0

For non-uniform profiles this expression does not vield linear focusing as in the



case of a perfect lens. This effect gives rise to serious aberrations, one of the
limitations of the plasma lens. The subject of aberrations and their effect on

. . . . 6] (7] ¥
plasma lens performance has been examined extensively in the literature.® "

3. Beam Dynamics: Initial Self-Pinch

Much of the previous work on plasma lenses concerns the effect of a thin
plasma lens on the transverse profile of a particle beam. In the present experi-
ments, however, the plasma column is long compared to the focal length of the
lens, and the beam dynamics are much more complex. In Ref. 6, there is a treat-
ment of the problem of the thick lens correction to the thin lens which includes
the effects of finite beam emittance and the raising of the focusing strength as
the beam becomes more dense inside the lens (ef. Eq. (2.3)). This analysis is not
strictly applicable to the present case, and therefore a simpler approximation 1s
chosen, that of laminar flow of the beam particles. Since the transverse wake-
fields felt by a particle depend only on the enclosed current, which is conserved
in laminar flow, and on the radius of the particle, each particle obeys an equation

of motion for paraxial trajectories derivable from a logarithmic potential,

Clro)

4 - =0, (3.1)

r

where ! indicates a derivative with respect to distance of propagation z, and C(ro)
is a constant dependent on initial radius 79. Near the center of a cylindrical
Gaussian this constant is given by C{rg) ~ (v/~)(ro/e;)?, where 7 is the Lorentz
factor and we have introduced the Budker parameter v, which is the nurnber of
particles per unit length measured in classical electron radil ro. Integrating Eq.

(3.1), the distance from the plasma boundary to the first focus is calculated,

S SR . -
5= L | mmmem— =T .
\/QC('PQ) J \/log {(ro/7) 2C(ro)
For a Gaussian initial profile one has s = o, m In these experiments the
number of particles per bunchis ¥ = 3.2 X 10'?, the rms bunch length o, = 2.1



mm and 4 = 42, so the Budker parameter is v = 1.6 x 10-2, The beam is thus
expected to come to its initial focus s ~ 8 cm, which is well before the end of the

plasma column of length L = 35 em.

It is difficult to analytically estimate the minimum pinched beam radius in
the presence of aberrations and finite initial emittance, because the transverse
profile of the beam changes so dramatically as it focuses under the influence of
nonlinear fields. This subject can be addressed most straightforwardly by use
of computer simulations. Computational treatments using a particle-in-cell code
of this and related aspects of the self-pinching process will be presented below.
Before proceeding to the computational work, an analytical model of the beam’s

approach to equilibrium is explored.

4. Beam Dynamics: Approach to Equilibrium

The transverse phase space dynamics of the beam under the influence of
its self-focusing magnetic fields can be calculated in principle from the Maxwell-
Vlasov equations, the self-consistent combination of the Maxwell electromagnetic
field equations and the Vlasov equation, which is written

of B TEAY F-Vp,f=0 4.1
"é?+(7me) PL- l';.f+ ' 'Pif_ . ()
Here f(r ,p,)is the beam’s transverse distribution function and F is the Lorentz
force arising from the charge and current distribution under consideration. In
this case the force is due to the transverse wake-fields given by Eq. (2.3}, which

depend on the distribution of the beam particles in configuration space.

At this point it can be remarked that, because of the large nonlinearities
in the radial focusing force and the effects of the individual particles’ angular
momentum, all particles have different effective betatron wave-numbers describ-
ing the periodicity of their orbits. Thus the initial coherent self-focusing motion

of a set of particles decoheres as the particles become out of phase with each



other, and the situation is approached where the distribution in configuration
space becomes uncorrelated with the distribution in momentum space, i.e. the
distribution seeks an equilibrium through collisionless or Landau damping. This
approach to equilibrium through phase decoherence in the particle oscillations,
whereby the coherent radial beam motion dissipates, was in fact initially sketched
out by by Bennett in 1955, who termed the effect ‘mixing’. "*! This effect is similar
to a phenomenon, also refered to as decoherence, observed in the experimental

. . . 18]
study of nonlinear transverse dynamics in synchrotrons.

As a specific type of stationary distribution is of present interest, the Maxwell-

Vlasov equation is now written in cylindrincally symmetric equilibrium as

of

2w,

=0, .
~ym Or Op, ' (4.2)

and the distribution function is assumed separable in coordinate and momentum
dependence, f(r,p;) = R(r)P(p;), because of the decorrelating effects of the non-

linearities. This assumption will be validated later by our computer simulations.

Upon substitution of the radial dependence of the magnetic self-force W;

from Eq. (2.3), and separation of variables, one obtains the momentum equation

or apy

Opr ~ ym

P, (4.3)

where —a is the separation constant, and the radial equation

r

202
?—Ri = —Rzaeﬁu /R(T’)r’dr'. (4.4)
or T

0

The solution to the Eq. (4.3) is, of course, a Gaussian {thermal) distribution,

P = \/ja_ exp —apf/Z’ym] (45)
ym

The solution to the radial equation corresponding to this thermal equilibrium in



momentum space is a Bennett profile"” which has the form

Ph
R(ry~n(r) = ————55 4.6
(r)~ lr) = e (49)
where a is the Bennett radius. The usual expression for the Bennett radius relates
it to the beam Debye length Ap, with 3 ~ 1,
g 2T, 2kT, ,

2
= 8Ap = = , 4.7
¢ D relp, vmed (4.7)

which only specifies the relationship between the beam transverse temperature
and current, not the radius, which cancels out of the equation. This uncertainty
can be be removed by invoking an approximate constraint on the asymptotic

form of the distribution function.

To derive this constraint, note that from the form of the self-fields of a cylin-
drically symmetric beam and the associated Maxwell-Vlasov equation that the
phase space density must be constant at (r,,p.) = (0,0), as from Eq. (4.1)
we see that 8f/8t = 0 there. If one takes an original four-dimensional phase
space density corresponding to a cylindrically symmetric bi-Gaussian profile, and
equates its initial value of £(0,0) to the final value of f(0,0) associated with the
Bennett equilibrium, the Bennett radius is given by

2 A

a” = , {4.8)
yv

where €, = 3¢ is the initial normalized emittance.

This argument is not strictly rigorous, however. Even though f(0,0) is a
constant of the motion, the form of the asymptotic state that we have assumed
is not completely correct. It has been known for some time that the Bennett
profile, being a state in thermal equilibrium, can evolve from a different initial
state due to the thermalizing influence of multiple scattering of beam particles

off the background plasma ions."™" The distribution function can become smooth



during this collisional process and thus approach the equilibrium solution to
the Maxwell-Vlasov equation, which is the product of two smooth functions, a

Bennett radial profile and Gaussian momentum profile.

In the case of the collisionless damping, however, the near-equilibrium state
evolves from the initial pinch by filamentation of the beam phase space as it
spirals under the influence of its own nonlinear self-fields. This filamentation
process does not greatly affect the center of the distribution in phase space if the
self-focusing forces there are nearly linear, which is the case for conditions not
too far from equilibrium. This is because near equilibrium the small amplitude
orbits in phase space are well behaved rotations about the fixed point of simple
harmonic motion, (0,0). On the other hand, large amplitude orbits experience
very nonlinear fields, and the filamentation is quite pronounced in these regions of
phase space. Since the derivation given above of the asymptotic Bennett radius
is concerned with the final values of f(r,,p_ ) at or near (0,0), the fact that
the motion near this point is well behaved makes the argument, which depends
critically on approximation of the distribution as a smooth function at small

amplitudes, quite accurate for cases relatively close too equilibrium.

If the motion is not well behaved even for small amplitude particles, as hap-
pens if the initial conditions are too far from equilibrium (e.g. a < ¢;), then the
distribution function filaments near the origin in phase space, and the approx-
imation of the actual distribution function as a product of smooth continnous
functions is not as good. Filamentation at small amplitudes thus causes the
asymptotic Bennett radius to be larger, and we rewrite Eq. (4.8) as an inequal-
ity, @ > 2¢,/,/qv. In fact, other effects, such as a deviation from the assumed
initial cylindrical symmetry, spurious plasma oscillations or nontrivial return cur-
rent density inside the beam radius will serve to strengthen this inequality. All

of these effects are present in experiments to some extent.

In the limit of applicable beam-plasma parameters, kpo. > 1 > kyo,, some

predictions can be made concerning the outcome of experiments. In the present

10



experiments the normalized emittance €, = 3 x 10~? rad-m. Since the maximum
in the beam current at £ = 0 corresponds to a maximum Budker parameter of
vy = 1.6 x 1072, the minimum Bennett radius predicted from the Viasov analysis
is ag > 0.72 mm. This pinching is not uniform along the length of the heam,
as in the model it depends on the current at a given point in £, a fact that
can be reflected by writing v(¢) = voexp{—£2/20%). One then has a(£)"? =
aaz exp{—£/20?), and the equilibrium density profile on axis is proportional to

exp (—¢&/a?), i.e. the bunch is effectively shortened on axis by a factor of /2.

5. Beam Dynamics: Simulation

In order to examine the deviations from the approximate theoretical treat-
ments presented to this point, particle-in-cell simulations of the beam motion
have been performed. In these calculations, which employed a modified ver-
sion of the code EMMA,"" written by Noble to calculate the related problem
of emittance growth in a space-charge dominated transport channel, cylindrical
symmetry is assumed, longitudinal effects are ignored, and the wake-fields are
calenlated simply by using Eq. {2.3). The evolution of the beam distribution at
one point in £ can be quickly followed under these asumptions. Some relevant
aspects of these computational results are presented here, which clarify the an-
alytical work and provide mere concrete predictions for the experimental data.
These results are specialized in that the spurious effects of plasma oscillations
are ignored in order to concentrate on the beam dynamics; fully electromag-
netic 2%—dimensional particle-in-cell simulations of heam self-focusing by plasma

wake-fields have been performed previously.jgl[lg]

To begin, we examine the evolution of the peak heam density py/ppg as it self-
pinches, which is shown in Fig. 1. The longitudinal distances are given in units
of kEI’ where kg = \/;Fo'_f is the initial small amplitude betatron wavenumber
in the beam’s self-focusing wake-field. All parameters in the computations shown

correspond to the strongest focusing experimental case, in which a/o, = 0.51,
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where the initial beam disribution function is Gaussian in momentum and coor-
dinate and the beam is at a waist. The initial pinching occurs in kgs = 1.27,
which is in excellent agreement with the value of kgs = m =~ 1.25 derived
in Eq. (3.2). The peak beam density is approximately 20 times the initial peak
density at this point; after slight defocusing, it subsequently does not reach such
large densities, but tends rapidly towards equilibrium. The maximum predicted
eqnilibrium density associated with a/c, = 0.51 is py/ppo = 2(0,/a)? = 7.85. It
appears that the equilibrium which develops is slightly less dense than this.

The fluctuations in the peak density have nearly damped after kgz = 3, or
one beam envelope oscillation, which is extremely quick. The degree to which the
distribution function comes into equilibrium, i.e. approaches a separable Bennett-

coordinate/Gaussian-momentum form, can be quantified by examining the cor-

relation parameter (rr') /e,. Here € = 1/ (r?) {((+')2} - {r7'}?) is the radial rms
emittance. The evoliution of this parameter is shown in Fig. 2. After initial
large excursions associated with the first focus and defocus, the correlations then
damp more slowly while oscillating with period kgA > 4. These oscillations do
not in large part reflect oscillation of the core of the beam, as these would have a
period kgA = 27(a/o,) ~ 3.2, and would show up also in Fig. 1. The correlations
are instead due to the spiralling ‘arms’ of the distribution, which occur at large
amplitude and thus have a lower average wave number. These spirals, which
come into equilibrium more slowly than the beam core due to the decrease in
focusing strength with amplitude and the larger initially empty regions of phase
space with which they must mix, have been observed in the simulations; they are
not shown in the interests of brevity. These results support the conclusion that
the phase space correlations in the heam core indeed dissipate quickly, after one

radial oscillation, as is necessary to apply the results of the analysis above.

It is apparent from Fig. 1 that the maximum beam density has stabilized
by kgz = 5, which corresponds to the length of the plasma column in these
experiments. It is reassuring to plot the transverse profile of the beam density

at this point, as is shown in Fig. 3, along with the Bennett profile from the
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theoretical prediction of the Vlasov treatment. The calculated profile is slightly
less dense and has a marginally wider core than the minimum-radins Bennett

profile, indicating small effects due to phase space filamentation,

Thus the simulations confirm the major conclusions of the analytical ap-
proaches that have been developed, and give additional insight into the expected
experimental results. The observation of core equilibration within kgz = 3 al-
lows use of the results of the Vlasov treatment to predict the self-pinched beam
radius, as this equilibration length is shorter than the plasma column in the

measurements, which are now described.

6. Measurement of Self-focused Beam Profiles in Plasma

Experimental measurement of the self-focused beam profiles at the end of a
35 cm long, variable density hollow cathode arc plasma column"" has been per-
formed in the same laboratory as previous PWFA investigations, the Argonne
Advanced Accelerator Test Facility™ (AATF). As no secondary beam had to be
created for the purpose of probing the wake-fields directly, the full intensity driv-
ing beam was passed through the AATF into the experimental region occupied
by the plasma source. To restate, the beam pulse delivered to the plasma source
has the following parameters; N ~ 3.2 x 10! electrons, rms length o, ~ 2.1
mm transverse emittance € ~ 7r mm-mrad, and o, ~ 1.4 mm. This experiment
used the video data aquisition and analysis capabilities of the AATF, as well the

one-picosecond resolution streak camera.

The streak camera is the basis of a diagnostic that allows measurement of
the transverse profile of the beam as a function of longitudinal position in the
beam. Physically, this scheme entails placing an opaque thin walled (to minimize
multiple scattering effects) Cerenkov cell inside the anode, in direct contact with
the downstream end of the plasma column. The design of this cell is heavily
constrained by the difficulty of survival of this relatively fragile device in such a

hostile environment as inside of an arc electrode. The wall in contact with the

13



plasma is 450 gm (.005 radiation lengths) of aluminum at its narrowest region, a
horizontal slit on which the beam is vertically centered. The beam profile at this
horizontal slit is converted to a photon profile by Cerenkov radiation due to the
beam electrons’ interaction with 2 mm of xenon gas at atmospheric pressure. The
beam electrons and Cerenkov photons exit the cell through a synthetic quartz
window. The photon profile is then transported through a telescopic optics sys-
tem and focused onto the horizontal slit of the streak camera, giving a swept
image that reflects the transverse profile of the beam in the horizontal direction
versus time in vertical (streak) direction. The resolution of the profile obtained

is 12 pm in the transverse dimension and 1 psec in time.

The time-resolved pictures of the self-pinched transverse beam profile reveal
a great deal about both the plasma and beam dynamics involved in the beam
self-focusing. We show in Fig. 4 contour plots of the streak camera picture of
the spatially resolved beam intensity, where the vertical axis is time and the
horizontal axis is the transverse (radial) dimension. The plot in Fig. 4(b) is the
profile with no plasma, and the plot in Fig. 4(a) shows the self-pinched profile in
the case where the plasma density np = 6.0 x 10'* em™3. In terms of the initial
beam profile, this corresponds to a beam length in plasma radians kpo, > 3,
and is thus in the regime where the plasma space charge neutralizes the heam
and magnetic self-focusing occurs. The dependence of the focusing strength on
enclosed current density is apparent from the contour shapes. With no plasma
present, the iso-intensity contours are approximately elliptical, as expected for a
beam with Gaussian profiles in both longitudinal and transverse dimensions. The
self-pinched profile, however, shows a transverse distribution which narrows no-
ticeably towards the longitudinal midplane. The self-pinched longitudinal profile
measured near the propagation axis is also steepened and effectively shortened in
time. This phenomenon, which is explored in more detail below, is also apparent
from inspection of the contours near the transverse beam center, as they also

narrow noticeably near the current maximum.

The plots in Fig. 5 shows the transverse cross-section (a projection of the
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most intense 0.5 mm long transverse strip) of both the cases from Fig. 4. In the
case of no plasma present shown in Fig. 5(b), we also show a best fit of the data,
to a Gaussian of width o, = 1.4 mm, with a dashed line. With dense plasma
present the self-pinched profile shown in Fig. 5(a) is obtained, with a best fit of
the data, to a Bennett profile of radius ¢ = 0.91 mm, indicated by the dashed line.
The agreement in form is about as good as would be expected on the basis of the
profile shown in Fig. 3. Recall that the minimum predicted Bennett radins for
this case is gg = 0.72 mm. The experimentally measured value is larger by about
25% due to the effects previously mentioned; the beam does not have perfect
cylindrical symmetry initially, and deviations from this ideal undoubtedly allow
more filamentation and effective dilution of the phase space density of the beam.
In addition, there are effects due to the plasma response; even in the high plasma
density case considered here the product kyo, which results on axis after pinching
{due to the effective pulse shortening described above) is about 2.2, which is just
on the border of the adiabatic regime of the plasma electron fluid motion where
one can assume approximate charge neutralization of the beam. The focusing in
the core of the beam can be lowered by the response lag of the plasma electrons

to the larger gradients in the beam charge density.

The effects of varying the plasma density have been explored, and these
phenomena are illustrated in Figs. 6 and 7. The width (FWHM) of the beam
intensity profiles, obtained from projection of the most intense 0.5 mm long
transverse strip of the beam image, plotted as a function of the plasma density
are shown in Fig. 6. The pinched beam profiles are not as narrow as the plasma
density is lowered past the condition that the the beam is long compared to a
plasma wavelength. The focusing forces do not depend on the enclosed current,
but on the current ahead of the point in question by a phase difference of Aky£ ~
7 /2. Thus the most intense portion of the beam’s focusing is dependent on the
less intense leading edge, and is therefore not focused as strongly, as can be seen
from Fig. 6. At low enough plasma density (ny < 103 em ™%, or kyo. < 1.2),

the focusing wake-fields are small inside of the beam, and large only behind
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the beam, resulting in the nearly complete degradation of the observed focusing
in Fig. 6. In intermediate cases, the maximum in the beam intensity on-axis
occurs after the current maximum. This is displayed in Fig. 7, which shows
the on-axis density profile obtained from projection of the most intense 0.2 mm
wide longitudinal strip of the beam image, plotted for four plasma densities,
np == 0.9,1.5,2.9 and 6.0 x 10" cm™?, using dashed, dotted, dot-dashed and solid
lines, respectively. The peak in density moves back as predicted, by an amount
slightly less than Akpé = n/2. This is because the current, which the on-axis
density is proportional to, falls towards the back of the beam. For low plasma
densities this tends to lengthen the on-axis beam profile, but if kyo, > 1, or
equivalently kpo, > Aky£, the on-axis profile is effectively shortened, as predicted
by the above analysis of the asymptotic equilibrium profile. For the most dense
case in Fig. 7, kpo. = 3.25, and the rms length of the on-axis density profile is 1.6
mm, in good agreement with the naive prediction given above of 2.1/4/2 = 1.5

mimn.

The final parametric dependence examined was the effect on the focusing of
varying the numnber of particles in the beam. The beam intensity was lowered
without changing the upstream optics by use of partially transmitting screens in
the beam-line upstream of the AATF. In Fig. 8 the width (FWHM) of the beam
profiles, obtained from projection of the most intense 0.5 mm long transverse
strip of the beam image, is plotted as a function of the number of particles N
in the beam, while holding the plasma density at ny = 2.9 x 10" em 3. The
beam width decreases with increasing beam intensity, which is anticipated from

the theory, as the focusing strength is dependent on N1/2.
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7. Conclusions

In these experiments, the self-pinched state of a beam in a plasma has been
ohserved. From theoretical and computational analysis, a model has been devel-
oped of how this state develops through fast collisionless damping of the beam’s
coherent motion. This damping is predicted to cccur due to nonlinear focusing
fields, after the beam has undergone an initial strong, coherent self-focus, and
subsequent near-equilibration inside the plasma column. The experimental re-
sults are in qualitative agreement with the analytical and computational models.
Deviations from behavior predicted by the model which can be attributed to ef-
fects of oscillatory plasma electron response have been explored experimentally.

These observed effects are explained adequately by the linear theory of plasma

wake-fields.

These experimental results have validated conclusions drawn from the non-
linear PWFA experiments,[”] in that the unexpectedly high degree nonlinearity
was attributed to two now directly observed effects of plasma wake-field focus-
ing — enhancement of the peak density, and the effective shortening of the beam
profile on-axis. In addition, the present experiments further strengthen empirical
support for the theoretical models used in plasma lens calculations. These inves-
tigations concerned plasma focusing and equilibration of the self-pinched beam.
Plasma lenses are more likely to be of interest in or near the thin lens limit, how-
ever. The physical processes of beam focusing in this limit, while less intricate
and difficult to predict than in the regime presently considered, still await direct
experimental investigation. In addition, even though the beams have been ob-
served to become much denser inside the plasma, the plasma response is still not
too far from linear, as n < ng. An alternative, and in some ways more attractive
regime of plasma wake-field focusing is termed the underdense plasma lens. ™™
In this scheme the beam is dense compared to the plasma, and the physics of the
plasma response is qualitatively different. Demonstration of plasma focusing in

this regime is planned for future experiments.

17



ACKNOWLEDGEMENTS

One of the authors (JBR) acknowledges helpful discussions with R. Noble, J.
Palkovic, L. Michelotti and E.P. Lee. This work supported by the U.S. Dept. of
Energy, Division of High Energy Physics, Contract W-31-109-ENG-38.

18



11,

11,

12,

13.

14,

15.

REFERENCES

P. Chen, J. M. Dawson, R. W. Huff, and T. Katsouleas, Phys. Rev. Lett.,
54, 693 (1985).

T. Katsouleas, Phys. Rev. A 33 (1986) 2056.

R. D. Ruth, A. Chao, P. L. Morton, and P. B. Wilson, Particle Accelerators
17 (1985) 171.

R. Keinigs and M. Jones, Physics of Fluids 30, 252 (1987).
P. Chen, Particle Accelerators 20 (1985) 171.
J. B. Rosenzweig and P. Chen, Phys. Rev. D 39, 2039 (1989).

J. B. Rosenzweig, B. Cole, D. B. Cline, and D. J. Larson, Particle Acceler-
ators, 24, 11 (1988).

P. Chen, S. Rajagoplan, and J. B. Rosenzweig, Phys. Rev. D 40, 923 (1989).

. J.J. Su, T. Katsouleas, J. Dawson and R. Fedele, UCLA Report PPG-1177,

1988 (unpublished).

J. B. Rosenzweig, D. B. Cline, B. Cole, H. Figueroa, W. Gai, R. Konecny,
J. Norem, P. Schoessow, and J. Simpson, Phys. Rev. Lett. 61, 98 (1988).

J. B. Rosenzweig, P. Schoessow, B. Cole, W. Gai, R. Koneeny, J. Norem
and J. Simpson, Phys. Rev. A -~ Rapid Comm., 39, 1586 (1989).

J. B. Rosenzweig, Phys. Rev. Letters, 58 (1987) 555, J. B. Rosenzweig,
Phys. Rev. A, 38, 3634 (1988).

T. Katsouleas and W. B. Mori, Phys. Rev. Lett., 81, 90 (1988).

A.Ts. Amatuni, S.S. Sekhpossian and E.V. Elbakian, Yerevan Preprint
YerPhi-935(86)-86 Yerevan, USSR (1986).

W. H. Bennett, Phys. Rev. 45, 890 (1934), and Phys. Rev. 88, 1584
(1955).

19



16

17.

18.

19,

20.

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

A. Chao, D. Johnson, S. Peggs, J. Peterson, C. Saltmarsh, L. Sachinger,
R. Meller, R. Siemann, R. Talman, D. Edwards, D. Finley, R. Gerig, N.
Gelfand, M. Harrison, R. Johnson, N. Merminga, and M. Syphers, Phys.
Rev. Lett. 61, 2752 (1988).

E.P. Lee, Phys. Fluids 19, 60 (1976).

R. J. Noble, to be published in Proceedings of the 1989 Particle Accelerator
Conference, AIP 1989.

J.J. Su, T. Katsounleas, J. Dawson, P. Chen, M. Jones and R. Keinigs, IEEE
Trans. Plasma Sci. PS-15,192 (1987).

H. Figueroa, W. Gai, R. Konecny, J. Norem, P. Schoessow, and J. Simpson,
Phys. Rev. Lett. 60, 2144 (1988).

FIGURE CAPTIONS

Peak calculated beam density py/ppo as a function of kgz, for initial condi-

tion a/o; = 0.51. For minimum equilibrium Bennett radius py/ppo = 7.85.

Calculated correlation parameter (vr'} /e, as a function of kgz, for initial

condition e/, = 0.51.

Histogram of the calculated beam density at kzz = 5 (the end of the plasma
column in the experiments), for initial condition a/c, = 0.51. Solid line is

the Bennett profile predict by the Vlasov treatment.

Contour plots of the spatially resolved beam intensity, with x being the
transverse (radial) coordinate and y the longitudinal (time) coordinate.
(a) Beam density contour with plasma of density n, = 6.0 x 1013 em3

present. (b) No plasma present.

Plots of the transverse intensity profiles (a projection of the most intense
0.5 mm long transverse strip) of the contours in from Fig. 4. (a) With

dense plasma present - the self-pinched profile (solid line) with a best fit
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Figure 6.

Figure 7.

Figure 8.

of the data to a Bennett profile of radius a = 0.91 mm (dashed linej. (b)
With no plasma — the unpinched profile (solid line) with a best fit of the
data to a Gaussian profile of width o, = 1.4 mm {dashed line).

Width (FWHM) of the intensity profiles obtained from projection of the
most intense 0.5 mm long transverse strip of the beam image, plotted as a

function of the plasma density.

Longitudinal on-axis beam density profile obtained from projection of the
most intense 0.2 mm wide longitudinal strip of the beam image, plotted
for four plasma densities, ng = 0.9,1.5,2.9 and 6.0 x 10" ¢m 3 (dashed,
dotted, dot-dashed and solid lines, respectively.

Width (FWHDM) of the intensity profiles obtained from projection of the
most intense 0.5 mm long transverse strip of the beam, plotted as a function

of the number of particles N in the beam (ng = 2.9 x 101 cm 3 ).
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